80 research outputs found

    A Cross-Layer Design Framework for Wireless Sensor Networks with Environmental Monitoring Applications

    Get PDF
    In the past few years, wireless sensor networks (WSNs) are becoming more and more attractive because they can provide services that are not possible or not feasible before. In this paper, we address the design issues of an important type of WSNs, i.e., WSNs that enable environmental monitoring applications. We first provide an overview and analysis for our ongoing research project about a WSN for coastal-area acoustic monitoring. Based on the analysis, we then propose a cross-layer design framework for future WSNs that provide environmentalmonitoring services. The focus of the framework is the network layer design and the key idea of the framework is to fully understand and exploit both the physical layer characteristics and the requirements of upper layer applications and services. Particularly, for the physical layer characteristics, our framework 1) can enable advanced communication technologies such as cooperative communication and network coding; 2) can utilize the transmission characteristics for identifying/authenticating asender; and 3) can exploit the communication pattern as a mean of sensing. For the requirements of applications and services, our framework 1) is service-oriented; 2) can enable distributed applications; 3) can utilize the fact that many applications do not have strict delay constraints. To illustrate the advantages of the framework, we also conduct a case study that may be a typical scenario in the near future. We believe that our study in this work can provide a guideline for future WSN design

    A Cross-Layer Design Framework for Wireless Sensor Networks with Environmental Monitoring Applications

    Get PDF
    In the past few years, wireless sensor networks (WSNs) are becoming more and more attractive because they can provide services that are not possible or not feasible before. In this paper, we address the design issues of an important type of WSNs, i.e., WSNs that enable environmental monitoring applications. We first provide an overview and analysis for our ongoing research project about a WSN for coastal-area acoustic monitoring. Based on the analysis, we then propose a cross-layer design framework for future WSNs that provide environmental monitoring services. The focus of the framework is the network layer design and the key idea of the framework is to fully understand and exploit both the physical layer characteristics and the requirements of upper layer applications and services. Particularly, for the physical layer characteristics, our framework 1) can enable advanced communication technologies such as cooperative communication and network coding; 2) can utilize the transmission characteristics for identifying/authenticating a sender; and 3) can exploit the communication pattern as a mean of sensing. For the requirements of applications and services, our framework 1) is service-oriented; 2) can enable distributed applications; 3) can utilize the fact that many applications do not have strict delay constraints. To illustrate the advantages of the framework, we also conduct a case study that may be a typical scenario in the near future. We believe that our study in this work can provide a guideline for future WSN design

    Cloud-Assisted Safety Message Dissemination in VANET-Cellular Heterogeneous Wireless Network

    Get PDF
    Abstract-In vehicular ad-hoc networks (VANETs), efficient message dissemination is critical to road safety and traffic efficiency. Since many VANET-based schemes suffer from high transmission delay and data redundancy, integrated VANETcellular heterogeneous network has been proposed recently and attracted significant attention. However, most existing studies focus on selecting suitable gateways to deliver safety message from the source vehicle to a remote server, while rapid safety message dissemination from the remote server to a targeted area has not been well studied. In this paper, we propose a framework for rapid message dissemination that combines the advantages of diverse communication and cloud computing technologies

    Broadcast-enhanced key predistribution schemes

    Get PDF
    We present a formalisation of a category of schemes that we refer to as broadcast-enhanced key predistribution schemes (BEKPSs). These schemes are suitable for networks with access to a trusted base station and an authenticated broadcast channel. We demonstrate that the access to these extra resources allows for the creation of BEKPSs with advantages over key predistribution schemes such as flexibility and more efficient revocation. There are many possible ways to implement BEKPSs, and we propose a framework for describing and analysing them. In their paper “From Key Predistribution to Key Redistribution,” Cichoń et al. [2010] propose a scheme for “redistributing” keys to a wireless sensor network using a broadcast channel after an initial key predistribution. We classify this as a BEKPS and analyse it in that context. We provide simpler proofs of some results from their paper, give a precise analysis of the resilience of their scheme, and discuss possible modifications. We then study two scenarios where BEKPSs may be particularly desirable and propose a suitable family of BEKPSs for each case. We demonstrate that they are practical and efficient to implement, and our analysis shows their effectiveness in achieving suitable trade-offs between the conflicting priorities in resource-constrained networks
    corecore